On different stratifications of the same algebra
نویسنده
چکیده
In the first part of the paper we study the relation between two partial pre-orders with respect to which an associative finite dimensional algebra is standardly stratified in the sense of Cline, Parshall and Scott, and the corresponding stratifying structures. We compare the families of standard modules, different filtration dimensions and the Ringel duals. In the second part of the paper we study properties of the set of those partial pre-orders, which make an algebra standardly (or weakly properly) stratified with the same family of standard modules. The last part of the paper contains numerical characterizations of standardly (weakly properly) stratified algebras.
منابع مشابه
On Some Properties of the Max Algebra System Over Tensors
Recently we generalized the max algebra system to the class of nonnegative tensors. In this paper we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverse of tensors is characterized. Also we generalize the direct product of matrices to the direct product of tensors (of the same order, but may be different dimensions) and i...
متن کاملAmenability and Weak Amenability of the Semigroup Algebra l^1 (〖 S〗_T )
Let S be a semigroup with a left multiplier on S. A new product on S is defined by related to S and such that S and the new semigroup ST have the same underlying set as S. It is shown that if is injective then where, is the extension of on Also, we show that if is bijective then is amenable if and only if is so. Moreover, if S completely regular, then is weakly amenable.
متن کاملStratifications of cellular patterns: hysteresis and convergence
A foam is a space-filling cellular pattern, that can be decomposed into successive layers or strata. Each layer contains all cells at the same topological distance to an origin (cell, cluster of cells, or basal layer). The disorder of the underlying structure imposes a characteristic roughening of the layers. In this paper, stratifications are described as the results a deterministic “invasion”...
متن کاملStratifications Associated to Reductive Group Actions on Affine Spaces
For a complex reductive group G acting linearly on a complex affine space V with respect to a characterρ, we show two stratifications ofV associated to this action (and a choice of invariant inner product on the Lie algebra of the maximal compact subgroup ofG) coincide. The first is Hesselink’s stratification by adapted 1-parameter subgroups and the second is the Morse theoretic stratification ...
متن کاملOn subalgebras of an evolution algebra of a "chicken" population
We consider an evolution algebra which corresponds to a bisexual population with a set of females partitioned into finitely many different types and the males having only one type. For such algebras in terms of its structure constants we calculate right and plenary periods of generator elements. Some results on subalgebras of EACP and ideals on low-dimensional EACP are obtained.
متن کامل